1	i	$y' = 6x^2 - 18x + 12$	M1	condone one error	
		= 12	M1	subst of $x = 3$ in their y'	
		y = 7 when $x = 3$	B1		
		tgt is $y - 7 = 12 (x - 3)$	M1	f.t. their y and y'	
		verifying $(-1, -41)$ on tgt	A1	or B2 for showing line joining (3, 7) and	
				(-1, -41) has gradient 12	5
	ii	y' = 0 soi	M1	Their y'	
		quadratic with 3 terms	M1	Any valid attempt at solution	
		x = 1 or 2	A1	or A1 for $(1, 3)$ and A1 for $(2, 2)$ marking	
		y = 3 or 2	A1	to benefit of candidate	4
	iii	cubic curve correct orientation	G1		
		touching x- axis only at (0.2,0)			
		max and min correct	G1	f.t.	
		curve crossing y axis only at -2	G1		3

2	1:	14 2 ² 6 ¹	B1	condone one error	1	
∠		$y' = 3x^2 - 6x$				
		use of $y' = 0$	M1			
		(0, 1) or (2, -3)	A2	A1 for one correct or $x = 0$, 2		
				SC B1 for (0,1) from their y'		
			T1	Dep't on M1 or y either side or clear	5	
		sign of y'' used to test or y' either	••		Ŭ	
		side		cubic sketch		
	ii	y'(-1) = 3 + 6 = 9	B1			
		$3x^2 - 6x = 9$	M1	ft for their y'		
		x = 3	A1	implies the M1		
		At P $y = 1$	B1			
		, , , , , , , , , , , , , , , , , , ,	B1			
		grad normal = -1/9 cao				
		y - 1 = -1/9 (x - 3)	M1	ft their (3, 1) and their grad, not 9		
		intercepts 12 and 4/3or use of	B1	ft their normal (linear)		
		•				
		$\int_{0}^{12} \frac{4}{3} - \frac{1}{9} x dx$ (their normal)				
			A1		8	13
		$\frac{1}{2} \times 12 \times \frac{4}{3}$ cao			-	

3	$x + x^{-1} \text{ soi}$ $y' = 1 - 1/x^{2}$ subs $x = 1$ to get $y' = 0$ $y'' = 2x^{-3} \text{ attempted}$ Stating $y'' > 0$ so min cao	B1	$1 - x^{-2}$ is acceptable Or solving $1 - x^{-2} = 0$ to obtain $x = 1$ or checking y' before and after $x = 1$ Valid conclusion First quadrant sketch scores B2	5
---	---	----	---	---

	Questio	on Answer	Marks	Guida	ance
4	(i)	$x^2(9-x^2) = 0$ soi	B1	$9 \times 0^2 - 0^4 = 0$	B0 in each case if correct answer appears from clearly incorrect working
		$x = 0$ and ± 3 , [so $a = 3$ or $a = -3$]	B1	$9 \times 3^2 - 3^4 = 0$ and $9 \times (-3)^2 - (-3)^4 = 0$	$a = \pm 3$ without working does not score
			[2]		
4	(ii)	$y' = 18x - 4x^3$	B1		
		$y'' = 18 - 12x^2$ or ft	B1		
		their $y' = 0$ soi	M1		
		$2x (9 - 2x^2) = 0$ so $x = 0$ oe	A1	or $18 \times 0 - 4 \times 0^3 = 0$ oe	
		x = 0, $y'' = 18$ cao so minimum	B1	or evaluation of y' at $\pm h$ oe where	
				$h < \sqrt{4.5}$	
		$x = \pm \sqrt{4.5}$ oe eg $\pm \frac{3\sqrt{2}}{2}$	A1	accept 2.12 or better for $\sqrt{4.5}$	
4	(iii)	$\int_0^3 (9x^2 - x^4) dx \text{ soi or ft}$	[6] M1	condone omission of, or wrong limits	
		$3x^3 - 0.2x^5$	A1	correct answer implies M1	ignore + c
		F[their positive a] [- F[0]]	M1	dependent on at least one term correct	M0 if neither of the limits is 0
		or (not and) $F[0] - F[$ their negative a]		· ·	M0 for $F[0] - F[$ their positive $a]$
		20.4	A 1		M0 for use of Trapezium Rule
		32.4 oe cao	A1 [4]		

5		2	B1 each term	
	their $\frac{dy}{dx} = 0$ correct step $x = \frac{1}{2}$ c.a.o.	M1 DM1 A1	s.o.i. s.o.i.	5

6	$y^{\prime\prime} = 2x - 6$	B1		
	y'' = 0 at $x = 3$	B1		
	y' = 0 at $x = 3showing y' does not change sign$	B1 E1	or that y'' changes sign	4