1	ii iii	$\begin{aligned} & y^{\prime}=6 x^{2}-18 x+12 \\ & =12 \\ & y=7 \text { when } x=3 \end{aligned}$ tgt is $y-7=12(x-3)$ verifying $(-1,-41)$ on tgt $y^{\prime}=0 \text { soi }$ quadratic with 3 terms $x=1 \text { or } 2$ $y=3 \text { or } 2$ cubic curve correct orientation touching x - axis only at $(0.2,0)$ max and min correct \qquad	M1 M1 B1 M1 A1 M1 M1 A1 A1 G1 G1 G1	condone one error subst of $x=3$ in their y^{\prime} f.t. their y and y^{\prime} or B2 for showing line joining $(3,7)$ and $(-1,-41)$ has gradient 12 Their y^{\prime} Any valid attempt at solution or A1 for $(1,3)$ and A1 for $(2,2)$ marking to benefit of candidate f.t.	5 4 4

2	i	$\begin{aligned} & \hline y^{\prime}=3 x^{2}-6 x \\ & \text { use of } y^{\prime}=0 \\ & (0,1) \text { or }(2,-3) \end{aligned}$ sign of $y^{\prime \prime}$ used to test or y^{\prime} either side $\begin{aligned} & y^{\prime}(-1)=3+6=9 \\ & 3 x^{2}-6 x=9 \\ & x=3 \end{aligned}$ At $\mathrm{P} y=1$ grad normal $=-1 / 9$ cao $y-1=-1 / 9(x-3)$ intercepts 12 and $4 / 3$ or use of $\begin{aligned} & \int_{0}^{12} 4 / 3-1 / 9 x \mathrm{~d} x \text { (their normal) } \\ & 1 / 2 \times 12 \times 4 / 3 \text { cao } \end{aligned}$	B1 M1 A2 T1 B1 M1 A1 B1 B1 M1 B1 A1	condone one error A1 for one correct or $x=0,2$ SC B1 for $(0,1)$ from their y^{\prime} Dep't on M1 or y either side or clear cubic sketch ft for their y^{\prime} implies the M1 ft their $(3,1)$ and their grad, not 9 ft their normal (linear)	5	13

3	$x+x^{-1}$ soi	B1		
	$y^{\prime}=1-1 / x^{2}$	B1	$1-x^{-2}$ is acceptable	
subs $x=1$ to get $y^{\prime}=0$	B1	Or solving $1-x^{-2}=0$ to obtain $x=1$		
M1ft	or checking y^{\prime} before and after $x=1$			
$y^{\prime \prime}=2 x^{-3}$ attempted	A1	Valid conclusion First quadrant sketch scores B2	5	

Question		Answer	Marks	Guidance	
4	(i)	$\begin{aligned} & x^{2}\left(9-x^{2}\right)=0 \text { soi } \\ & x=0 \text { and } \pm 3,[\text { so } a=3 \text { or } a=-3] \end{aligned}$	B1 B1 [2]	$\begin{aligned} & 9 \times 0^{2}-0^{4}=0 \\ & 9 \times 3^{2}-3^{4}=0 \text { and } 9 \times(-3)^{2}-(-3)^{4}=0 \end{aligned}$	B0 in each case if correct answer appears from clearly incorrect working $a= \pm 3$ without working does not score
4	(ii)	$\begin{aligned} & y^{\prime}=18 x-4 x^{3} \\ & y^{\prime \prime}=18-12 x^{2} \text { or } \mathrm{ft} \\ & \text { their } y^{\prime}=0 \text { soi } \\ & 2 x\left(9-2 x^{2}\right)=0 \text { so } x=0 \text { oe } \\ & x=0, y^{\prime \prime}=18 \text { cao so minimum } \\ & x= \pm \sqrt{4.5} \text { oe eg } \pm \frac{3 \sqrt{2}}{2} \end{aligned}$	B1 B1 M1 A1 B1 A1 [6]	or $18 \times 0-4 \times 0^{3}=0$ oe or evaluation of y^{\prime} at $\pm h$ oe where $h<\sqrt{4.5}$ accept 2.12 or better for $\sqrt{4.5}$	
4	(iii)	$\int_{0}^{3}\left(9 x^{2}-x^{4}\right) \mathrm{d} x$ soi or ft $3 x^{3}-0.2 x^{5}$ $\mathrm{F}[$ their positive a] [- $\mathrm{F}[0]]$ or (not and) F[0] - F[their negative a] $32.4 \text { oe cao }$	M1 A1 M1 A1 [4]	condone omission of, or wrong limits correct answer implies M1 dependent on at least one term correct	ignore + c M0 if neither of the limits is 0 M0 for $\mathrm{F}[0]$ - F[their positive a] M0 for use of Trapezium Rule

$\mathbf{5}$	B1 each term their $\frac{d y}{d x}=0$ correct step $x=1 / 2$ c.a.o.	M1 DM1 A1	s.o.i.	s.o.i.

$\mathbf{6}$	$y^{\prime \prime}=2 x-6$	B1		
	$y^{\prime \prime}=0$ at $x=3$	B1		
	$y^{\prime}=0$ at $x=3$			
showing y^{\prime} does not change sign	E1	or that $y^{\prime \prime}$ changes sign	4	

